Strong Convergence Theorems of the Ishikawa Process with Errors for Strictly Pseudocontractive Mapping of Browder-Petryshyn Type in Banach Spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Convergence Theorems of the Ishikawa Process with Errors for Strictly Pseudocontractive Mapping of Browder-Petryshyn Type in Banach Spaces

We prove several strong convergence theorems for the Ishikawa iterative sequence with errors to a fixed point of strictly pseudocontractive mapping of Browder-Petryshyn type in Banach spaces and give sufficient and necessary conditions for the convergence of the scheme to a fixed point of the mapping. The results presented in this work give an affirmative answer to the open question raised by Z...

متن کامل

Ishikawa Iteration with Errors for Approximating Fixed Points of Strictly Pseudocontractive Mappings of Browder-Petryshyn Type

Let q > 1 and E be a real q−uniformly smooth Banach space. Let K be a nonempty closed convex subset of E and T : K → K be a strictly pseudocontractive mapping in the sense of F. E. Browder and W. V. Petryshyn [1]. Let {un} be a bounded sequence in K and {αn}, {βn}, {γn} be real sequences in [0,1] satisfying some restrictions. Let {xn} be the bounded sequence in K generated from any given x1 ∈ K...

متن کامل

Strong Convergence Theorems of Ishikawa Iteration Process With Errors For Fixed points of Lipschitz Continuous Mappings in Banach Spaces

Let q > 1 and E be a real q-uniformly smooth Banach space, K be a nonempty closed convex subset of E and T : K → K be a Lipschitz continuous mapping. Let {un} and {vn} be bounded sequences in K and {αn} and {βn} be real sequences in [0, 1] satisfying some restrictions. Let {xn} be the sequence generated from an arbitrary x1 ∈ K by the Ishikawa iteration process with errors: yn = (1− βn)xn + βnT...

متن کامل

Convergence theorems of implicit iterates with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces

In this paper, we prove that an implicit iterative process with er-rors converges strongly to a common xed point for a nite family of generalizedasymptotically quasi-nonexpansive mappings on unbounded sets in a uniformlyconvex Banach space. Our results unify, improve and generalize the correspond-ing results of Ud-din and Khan [4], Sun [21], Wittman [23], Xu and Ori [26] andmany others.

متن کامل

Strong Convergence Theorems of Nonself Nonexpansive Mapping in Banach Spaces

In this paper, we obtain the strong convergence of a Halpern type iterative scheme to a fixed point of nonself nonexpansive mapping in Banach spaces. Our results improve and extend the corresponding results of Jung [6], Song [12,13], Aoyama [2]. Mathematics Subject Classification: 47H09, 47J25

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fixed Point Theory and Applications

سال: 2011

ISSN: 1687-1820,1687-1812

DOI: 10.1155/2011/706206